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A B S T R A C T

The use of Bayesian structural equation modeling (BSEM) provided additional insight into the 
WISC–V theoretical structure beyond that offered by traditional factor analytic approaches (e.g., 
exploratory factor analysis and maximum likelihood confirmatory factor analysis) through the 
specification of all cross loadings and correlated residual terms. The results indicated that a five- 
factor higher-order model with a correlated residual between the Visual-Spatial and Fluid 
Reasoning group factors provided a superior fit to the four bifactor model that has been preferred 
in prior research. There were no other statistically significant correlated residual terms or cross 
loadings in the measurement model. The results further suggest that the WISC–V ten subtest 
primary battery readily attains simple structure and its index level scores may be interpreted as 
suggested in the WISC–V’s scoring and interpretive manual. Moreover, BSEM may help to 
advance IQ theory by providing contemporary intelligence researchers with a novel tool to 
explore complex interrelationships among cognitive abilities—relationships that traditional 
structural equation modeling methods may overlook. It can also help attenuate the replication 
crises in school psychology within the area of cognitive assessment structural validity research 
through systematic evaluation of complex structural relationships obviating the need for CFA 
based post hoc specification searches which can be prone to confirmation bias and capitalization 
on chance.

1. Introduction

Assessment researchers in school psychology may not be familiar with the extension of Bayes’ Theorem to structural equation 
modeling (van de Schoot et al., 2017). This is evidenced by only a single study using this technique appearing in any school psychology 
journal to date (e.g., Dombrowski et al., 2018). Despite this lacuna, Bayesian structural equation modeling (BSEM) holds promise as a 
technique for evaluating the latent structure of assessment instruments, especially tests of cognitive ability, within many fields 
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including school psychology (Muthén & Asparouhov, 2012). It augurs to overcome some of the limitations of traditional (i.e., fre
quentist) factor analytic procedures (Brown, 2015) and portends to better reflect not only the measurement model of an instrument but 
also its underlying theory given recent speculation that the models for some commercial ability measures may be too complex to be 
evaluated by traditional structural validity methods (e.g., McGrew et al., 2023).

Historically, factor analysis has been regarded as having two major classes: exploratory (or unconstrained factor analysis) and 
confirmatory (or constrained factor analysis; Gorsuch, 1983). Regardless of the nomenclature involved, no technique is inherently 
confirmatory or exploratory (Loehlin & Beaujean, 2017). Each class of frequentist factor analysis contains limitations. A potential 
limitation of traditional confirmatory factor analytic (CFA) estimation is the need to apply overly strict constraints to represent hy
potheses about latent structures that are often speculative unless the discrepancy between the researcher’s understanding of, and the 
actual state of, nature equals or approaches zero. This manifests in the general requirement to fix cross-loadings to zero and estimate 
only a limited number of residual correlations due to available degrees of freedom. When too many parameters are freely estimated 
using CFA then this can contribute to statistical non-identification and lack of model convergence. CFA can also be prone to the 
practice of post hoc model modifications that may capitalize on chance (MacCallum et al., 1992; Marsh et al., 2009) and misrepresent 
the underlying factor structure and theory for an instrument (see also Canivez & Kush, 2013). Over constraining of models can lead to 
additional problems. For example, when a model is overly constrained, it may overlook important structural relationships that may not 
have been considered in advance resembling a problem akin to specification bias in standard multiple regression.

On the other hand, exploratory factor analysis (EFA) can partially overcome this limitation by freely estimating all primary and 
secondary loadings; however, EFA has its own set of limitations. The procedure reduces researcher choice to a decision about the 
number of factors to extract and retain to arrive at desired simple structure, although there are a variety of methods available to suggest 
the number of viable factors to extract (Watkins, 2018). Unlike with CFA, EFA does not determine a priori where the indicators will 
load; instead, loadings are permitted to “speak for themselves” with the factor analytic algorithm determining the location of primary 
loadings and cross-loadings, if present (Carroll, 1985; Gorsuch, 1983). From a scientific perspective, this may be regarded as a positive 
feature of EFA especially when less is known about an instrument or its underlying theoretical structure. EFA can work in a com
plementary fashion with CFA by establishing a baseline model for a new or newly revised instrument against which other models may 
be tested.

BSEM represents a hybrid of EFA and CFA incorporating aspects of both procedures, and potentially augmenting both with the 
additive capability of specifying all correlated residuals at the indicator and latent structural level. Since BSEM specifies cross-loadings 
and correlated residuals using priors that approach, but are not fixed at, zero it may permit an otherwise non-identified model in 
frequentist CFA to achieve statistical identification. For instance, simple structure in CFA hypothesizes that a variable (i.e., subtest) 
loads one and only one primary factor (i.e., no crossing loadings). In an IQ test this may not reflect well the true structural reality of the 
instrument. A more realistic hypothesis might be that selected variables have a major loading on hypothesized factors as well as small 
cross-loadings due to a minor influence on the variable from some of the other factors. Analogously, some residuals may be correlated 
because of omission of minor factors or because they share a source of variance unrelated to the general factor. Within the context of 
CFA, it is exceptionally difficult to envision which residuals should be correlated. Freeing all of these residual variances would lead to a 
nonidentified model in conventional ML CFA. BSEM offers a possible solution to this problem as many variables in psychology and 
education are known to be correlated. It is this high intercorrelation among variables within tests of cognitive ability that supports 
need for the extraction of a higher-order dimension (Thompson, 2004). The higher-order dimension is thought to be something called g 
or general intelligence. In a bifactor model the general factor directly influences all of the subtests (indicators). The general factor 
indirectly influences subtest variance via mediation through the latent first-orders factors in the higher-order model (please see 
Canivez [2016], Carroll [1995] and the addendum in the online supplement (https://osf.io/by28n/?view_ 
only=fb977f1304fa48d1adb0798450be6f47).

for a more thorough explication of the comparison of higher-order and bifactor models). Specification of all cross loadings and 
correlated residual terms could increase clarity of an instrument’s underlying structure and connection to theory (Asparouhov & 
Muthén, 2015; Muthén & Asparouhov, 2012) by arriving at final model in a more efficient manner (i.e., without need for first running 
EFA followed by CFA with multiple post hoc model specifications). A summary of frequentist EFA and CFA compared to Bayesian 
structural equation modeling is shown in Table 1. The process of Bayesian estimation is next described.

2. Bayesian estimation

One of the more important considerations when undertaking a Bayesian analysis is the selection of priors. In BSEM, parameters are 
viewed as variables instead of constants and use a distribution known as a prior (Muthén & Asparouhov, 2012; Zyphur & Oswald, 
2015). The selection of the prior is important. It is influenced by “prior knowledge” which may be predicated upon theory, pilot 
studies, exploratory factor analyses, and extant empirical literature (Gelman et al., 2004; Stone, 2013). With Bayesian estimation, the 
observed data provide information, which is subsequently used to modify a prior into a posterior distribution that produces a median 
estimate bracketed by a credibility interval. Bayesian estimation produces three different distributions: the prior, the posterior, and the 
likelihood (Gelman et al., 1996; Gelman et al., 2004). The likelihood represents the distribution of data predicated upon a parameter 
value. The posterior distribution contains estimated parameter values that fall between the likelihood and the prior. Priors are 
categorized as either noninformative (i.e., diffuse) or informative. A noninformative prior typically contains a normal distribution with 
a large variance. When the prior variance is large, the likelihood contributes more information to the formation of the posterior 
resulting in an estimate closer to the maximum likelihood estimate. When using BSEM this will generally lead to model rejection 
(Muthén & Asparouhov, 2012) whereby the posterior predictive value hovers around zero.
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Table 1 
Summary of ML CFA, EFA and BSEM Characteristics.

Characteristics ML CFA Traditional EFA BSEM

Theory Frequentist Frequentist Bayes
Parameters Constants with standard errors 

bracketed by a confidence interval
Constants with standard errors 
bracketed by a confidence interval

Variables with distributions bracketed by a credibility interval

Cross-Loadings Exact zeros though can be specified 
requiring a degree of freedom

Freely estimated Estimated via informative priors (zero mean and small variance)

Major Loading Freely estimated Freely estimated Diffuse noninformative priors (zero mean and infinite variance)
Correlated 

Residuals
Specified requiring a degree of freedom Not available Informative priors (df*D, df) where df = degree of freedom and D = residual variance

Model 
Modification

Multiple indices with improvement 
made in a stepwise fashion

Typically, not used but some are 
available.

All parameters freed and simultaneously estimated. Use of Deviance Information Criteria (DIC) in Mplus and other 
indices (e.g., Bayes RMSEA) in other statistical applications such as R and WinBugs.

Parameter 
Estimates

Typically assumed to be normally 
distributed (not all cases)

Typically assumed to be normally 
distributed (not in all cases)

Does not assume a normal distribution

Sample Size Requires large sample size Requires large sample size Does not need large samples. With small sample sizes the prior dominates decreasing variance and increasing bias. 
With larger samples sizes the influence on the posterior is diminished producing estimates closer to those produced 
by ML CFA causing PPP to not escape from zero.

Note. ML CFA = maximum likelihood confirmatory factor analysis, EFA = exploratory factor analysis, and BSEM = Bayesian structural equation modeling. Adapted from Dombrowski et al. (2018).
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2.1. Markov Chain Monte Carlo (MCMC)

Bayesian estimation utilizes MCMC (Edwards, 2010; Green, 1995; Link & Eaton, 2012) algorithms to draw random samples 
iteratively from the posterior distribution of the model parameters. This data generation process is similar to conventional Monte Carlo 
simulation, which also utilizes a random sampling technique. The Gibbs algorithm (Casella & George, 1992) is the most popular 
approach to MCMC sampling. The MCMC algorithm is evaluated for convergence by monitoring the potential scale reduction (PSR) 
convergence criterion (Gelman et al., 2004; Gelman & Rubin, 1992). The first half of the MCMC chains (i.e., the burn in phase) is used 
to calibrate the model. The second half of the MCMC chain is used to estimate the posterior distribution (Muthén & Asparouhov, 2012). 
The PSR criterion compares within- and between-chain variation of parameter estimates. A resulting PSR less than 1.10 indicates an 
acceptable convergence level while a PSR greater than 1.10 indicates that the model should be rejected. A PSR equivalent to 1.00 is 
considered perfect model convergence (Kaplan & Depaoli, 2013). Trace and autocorrelation plots may also be evaluated for each 
parameter to determine model convergence. If plots display a lack of rapid up-and-down fluctuations and an absence of trends over 
time then the model is considered to have converged properly (Asparouhov & Muthén, 2010; Kaplan & Depaoli, 2013). If a model does 
not converge then the number of iterations (I) should be increased first by two (2I) and then by four (4I; Muthén & Asparouhov, 2012) 
until the model attains convergence. An iteration sensitivity analysis is also recommended to determine stability of parameter esti
mates. However, going beyond 250,000 iterations without convergence likely suggests a model should be rejected. Upon attainment of 
model convergence, the next step involves an investigation of model fit with the data and consideration of which model might be 
preferred.

2.2. Model fit and comparison

2.2.1. Posterior predictive checking
Posterior predictive checking is used to determine a model’s fit with data. Although research investigating the factor structure of 

instruments has used the posterior predictive P-value (PPP) as a model comparison tool (Cain & Zhang, 2019), it is most appropriately 
used for checking whether the observed data are similar to the modeled data (Gelman et al., 1996). PPP values range from 0 to 1, with a 
value of .50 considered perfect model fit (Gelman et al., 1996; Muthén & Asparouhov, 2012). Values of less than .10, or greater than 
.90 indicate poor model fit with data. The distribution of PPP values is uniform between 0 and 1 (Gelman et al., 1996). In practice, PPP 
values between .10 and .90 are considered almost equally likely under the null hypothesis. The PPP signals something is wrong with a 
model when a PPP estimate is at an extreme tail (e.g., <.10 or >.90). For example, when a PPP is less than .10 or greater than .90 then it 
should be concluded that the data are not very consistent with the model and the model should be rejected. The PPP may also be 
assessed for model fit with the data by visually inspecting posterior distribution scatterplots and distribution plots (Muthén & Muthén, 
1998–2017). If the scatterplot shows a similar proportion above and below the 45-degree line and the distribution plot demonstrates a 
balance on both sides of the median line, then the data is considered to have fit the data well.

2.2.2. Deviance information criteria
A researcher may wish to invoke model comparison tools to determine which model is ‘superior’ or ‘best.’ These model comparison 

tools may include the deviance information criterion (DIC; Vehtari & Gelman, 2017), leave-one-out cross-validation (LOO), Bayesian 
root mean square error of approximation (Hoofs et al., 2018), and the widely applicable information criterion (WAIC). Although 
available in R (R Core Team, 2023), WAIC and LOO are less frequently utilized by researchers because of programming and 
computational complexity. BRMSEA is available via hand calculation, but validation studies are needed. In Mplus, this generally leaves 
one model fit index, the DIC, to determine which model is to be preferred (Muthén & Asparouhov, 2012). The DIC is interpreted in the 
same way as frequentist ML CFA information criterion fit statistics (i.e., AIC and BIC) where lower values are generally preferred 
although theoretical alignment must also be considered. Of consequence, with BSEM, the need to rely upon multiple modification 
indices, as occurs in ML CFA, for model respecification may be obviated by the simultaneous estimation of all cross-loadings and 
correlated error terms. Because all relationships among indicators and factors are estimated simultaneously, this tends to eliminate 
much of the need for post hoc specification searches that may capitalize on chance.

2.3. Utility of BSEM for tests of cognitive ability and purpose of the study

BSEM may be an especially appropriate methodology for use with instruments that presume to measure correlated traits such as 
commercial tests of intellectual functioning that often have overlapping constructs left un-evaluated by traditional EFA and CFA 
techniques. BSEM has been used twice previously to evaluate the structure of cognitive ability measures (e.g., DAS-II [Dombrowski 
et al., 2018] and WISC-IV [Golay et al., 2013]). Both studies offered additional insight into the factor structure of the respective 
cognitive ability instruments not previously discussed in the extant, frequentist literature. For instance, Golay et al. (2013) discovered 
that a direct hierarchical (bifactor) five-factor Cattell-Horn-Carroll (CHC) structure for the WISC–IV (Wechsler, 2003) was superior to 
the publisher posited four-factor higher-order structure that cohered with prior Wechsler Theory. Dombrowski et al. (2018) found that 
a two-factor structure for the DAS–II with two subtests only loading on the general factor was superior to the publisher proposed three- 
factor structure. However, Golay et al. did not employ correlated residuals in their analyses. Dombrowski et al. investigated correlated 
residuals but not at the latent group factor level.

Accordingly, the present study sought to expand upon the use of BSEM to the WISC–V by applying all features of BSEM technology 
not previously used in the prior studies (e.g., simultaneous estimation of small variance cross-loadings and correlated residuals for both 
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subtests and group factors). Since its publication, the Wechsler Intelligence Scale for Children-Fifth Edition (WISC–V; Wechsler, 2014a) 
has been the subject of considerable debate in the empirical literature. Questions remain regarding its true underlying factor structure 
as numerous rival models have been posited based on re-analysis of the normative and clinical sample data. Attempts at replicating the 
five-factor higher-order structure presented in the manual have been generally unsuccessful. Instead, frequentist EFA and CFA 
methodologies have suggested an alternative four factor bifactor structure (e.g., Canivez et al., 2017; Dombrowski et al., 2017). 
Therefore, this study may prove to be a useful replication attempt that provides further insight to help to resolve the debate in the field 
regarding the theoretical structure of the WISC–V, which is critical given the frequency of its use in school psychology (Benson et al., 
2019) and clinical practice. This study may also provide further insight into how the WISC–V should be scored and interpreted given 
that the scoring structure provided in the WISC–V manual has been questioned by researchers (e.g., Canivez & Watkins, 2016). Finally, 
this study may prove useful for evaluating whether BSEM can offer greater insight into the nature of cognitive abilities and their 
relationship with existing tests of intelligence.

3. Method

3.1. Participants

Participants included a randomly selected sample (N = 710) of children between the ages of 6 and 16 years referred for clinical 
assessments through a large, outpatient pediatric psychology/neuropsychology clinic within a children’s specialty hospital. Deiden
tified WISC–V ten primary subtest data were retrieved from the hospital’s electronic medical records. Use of the data for inclusion in 
the study was approved by the hospital’s Institutional Review Board.

Table 2 presents demographic characteristics of the clinical sample used in the analysis. As shown, the sample was primarily 
composed of White/Caucasian and Black/African American youth. The participants’ ages ranged from 6.0 to 16.93 years and averaged 
10.88 years (SD = 2.79 years). Table 3 presents the composition of the clinical sample demonstrating that three diagnostic groups 
(ADHD, 48.3 %; other nervous system disorders, 14.1 %; and anxiety, 10.1 %) comprised nearly three-fourths of the sample. Table A11

provides the descriptive statistics for the ten WISC–V subtests and corresponding index scores; Table A2 presents the covariance/ 
correlation matrices; and Table A3 contains the Mplus code with discussion should a researcher wish to use this information to 
reproduce the analyses presented in this study.2

3.2. Instrument

The WISC–V contains 16 subtests, but its ten-subtest primary battery is typically administered in clinical practice (Benson et al., 
2019). The scoring structure for the primary battery includes five indices: the Verbal Comprehension Index (VCI; Similarities and 
Vocabulary); Visual Spatial Index (VSI; Block Design and Visual Puzzles); Fluid Reasoning Index (FRI; Matrix Reasoning and 
Figure Weights); Working Memory Index (WMI; Digit Span and Picture Span); and Processing Speed Index (PSI; Coding and Symbol 
Search). Subtest scores have means of 10 with standard deviations of 3. Index scores have means of 100 with standard deviations of 15. 
Detailed descriptions of the WISC–V along with evidence preliminary reliability and validity evidence are available in the WISC–V 
Technical and Interpretive Manual (Wechsler, 2014b) and elsewhere (e.g., Kaufman et al., 2016; Sattler et al., 2016).

3.3. Procedure

BSEM (i.e., Bayes CFA) was used to investigate three different WISC–V models that have been featured within either the manual of 
the measurement instrument (e.g., the five factor higher-order model that is used by practitioners to score the instrument) or the extant 
literature (e.g., a four factor bifactor model that was found by independent research to be preferable to the publisher’s presented five 
factor higher-order scoring structure). Mplus 8.4 (Muthén & Muthén, 1998–2017) was used for Bayesian estimation. Four different 
BSEM specifications were used to evaluate each of the models: (1) an analysis without cross-loadings or correlated residuals; (2) an 
analysis where all cross-loading are simultaneously estimated; (3) an analysis where all cross-loadings and correlated residuals for the 
subtests only are specified; and (4) an analysis where all cross-loadings and correlated residuals for the subtests and group factors are 
simultaneously estimated. A prior mean of 0 and variance of .01 was established a priori for cross-loadings based upon theoretical 
considerations. Given the interrelationship among cognitive ability subtest indicators this cross-loading range was posited to be 
appropriately large to detect meaningfully important cross-loadings, but not too large to cause issues with model convergence. A prior 
variance of .01 allows a cross-loading estimate range of − .20 to .20 to be recovered.

This study also conducted a sensitivity analysis for prior variances of .001, .005, .01, .02, .03, .04 and .05 respectively. A second 
sensitivity analysis was conducted investigating whether the parameter estimates were stable across iterations (I) in accord with 
Muthén and Asparouhov (2012). To be thorough, iterations of I, 2I, 4I, 8I, 10I, 20I and 25I, where I = 10,000, were evaluated using a 
prior of .01 across the cross-loadings only models. An Inverse-Wishart prior variance based on the procedure outlined in Asparouhov 
and Muthén (2015) was selected for specification of subtest residual prior variances (Asparouhov & Muthén, 2010) while that 

1 Tables denoted by “A” indicate supplementary materials, which can be found at the following link: https://osf.io/by28n/?view_ 
only=fc350822960948ab8b8e35a2dd48b068

2 Interested readers may also contact the lead author for any questions pertaining to the code used in this study.
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discussed by Muthén and Asparouhov (2012) was used for the group factor residuals to cohere with best practice. Two MCMC chains 
were used and iterations were established with the first half discarded as the burn-in phase. A model was determined to have attained 
convergence when the PSR stabilized on a value less than 1.10 and when there was a satisfactory Kolmogorov–Smirnov distribution (i. 
e., no discrepant posterior distributions in the different MCMC chains that led to model non-convergence; Muthén & Muthén, 
1998–2017).

4. Results

The results of the iteration sensitivity analysis for all models at a prior of .01 for the cross-loadings only analysis is shown in Table 4. 
As indicated, the iteration sensitivity analysis produced model convergence and consistent DIC levels across the four and five factor 
higher-order models. Both models also produced consistent parameter estimates regardless of iteration selected. On the other hand, the 
four factor bifactor model produced model convergence at iteration levels between 40,000 and 100,000 but not below or above this 
level. The results of this sensitivity analysis also demonstrated a wider range in DIC and unstable parameter estimates for the bifactor 
model. A priors sensitivity analysis was also undertaken (see Table 5). As shown, the four factor bifactor model converged at a prior 
level of .005 and .01 but not at other levels. With the four and five factor higher-order models, a prior of .005 through .04 produced 
model convergence, and DIC stability. Although the 0.03 and 0.04 levels produced the lowest DIC for the four- and five-factor higher- 
order models respectively, a prior variance of 0.01 was deemed best for several reasons for all models: (1) it was the a priori established 
prior variance level based upon theoretical considerations and extant literature; (2) increasing the prior to a level higher than 0.01 did 
not materially alter the magnitude and patterning of loadings; and (3) a prior variance higher than 0.01 led to model nonconvergence 
for the correlated residuals analyses. Evidence of model convergence for the five-factor higher-order model with correlated residuals is 
shown in Figs. A1 and A2 in the online supplement (https://osf.io/by28n/?view_only=fc350822960948ab8b8e35a2dd48b068)where 
both the distribution and scatter plots suggested that the model fit the data well. In totality, the four- and five-factor higher-order 
models produced stable and consistent parameter estimates, whereas the four-factor bifactor model did not across both the iteration 
and prior variance sensitivity analyses. When the bifactor model was tested at different iterations and prior variance levels it displayed 
model instability and incoherence with the bifactor results from prior literature (see Table 6 for loading estimates demonstrating 
model instability).

Table 7 shows the results of the three models tested according to four specifications: (1) no cross loadings; (2) cross-loadings only; 
(3) cross-loadings plus correlated residuals (subtests); and (4) cross-loadings plus correlated residuals (subtests and group factors). 

Table 2 
Demographic Characteristics of the Clinical Sample.

Identified Sex

Race/Ethnicity N Percent Female Male

White 365 51.4 120 245
Black 211 29.7 62 149
Hispanic 22 3.1 5 17
Multi-racial 67 9.4 23 44
Unknown/Other 45 6.3 20 25
Total 710 230 480
Percent 100.0 32.4 % 67.6 %

Table 3 
Diagnostic Categories of the Clinical Sample.

ICD-10 Diagnosis N Percent

ADHD 343 48.3
Other nervous system disorders 100 14.1
Anxiety disorders 72 10.1
Adjustment disorder 36 5.1
Mood disorders 35 4.9
Epilepsy 26 3.7
Oncologic conditions 16 2.3
Disruptive behavior disorders 16 2.3
Other behavioral and emotional disorders 16 2.3
Other medical conditions 14 2.0
Learning/cognitive/speech disorders 14 2.0
Congenital abnormalities 11 1.5
Chromosomal abnormalities 6 0.9
Traumatic brain injury 4 0.5
Total 710 100.0

Note. ICD = international classification of diseases, tenth edition; ADHD = attention deficit/hyperactivity 
disorder
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There were several notable findings. Although the four-factor bifactor model (with cross-loadings) produced the lowest DIC (see 
Table 7), when the model was tested at different iterations and prior variance levels it displayed model instability and incoherence 
with prior literature (see Table 6). Specifically, the only group factor to consistently emerge was the Processing Speed factor. The other 
factors produced negatively loaded parameter estimates or did not significantly load their theoretically posited factors. The bifactor 
model also did not converge when correlated residuals were specified across all prior variance levels and iterations. Consequently, the 
bifactor model was deemed a generally poor fit with these data.

Also shown in Table 7, the five-factor higher-order model with cross-loadings only produced the second lowest DIC to that of the 
four-factor bifactor model. When correlated residuals were specified for the subtests, none produced a significant association across 
either the four- or five-factor higher-order models. When correlated residuals for subtests and latent group factors were specified, the 
five-factor higher-order model demonstrated a significant correlated residual between the Fluid Reasoning group factor and the Visual 

Table 4 
Iteration Sensitivity (Prior Variance = 0.01) and Resulting DIC.

Markov Chain Monte Carlo Iterations (MCMC)
DIC

Model 10 K 20 K 40K 80 K 100 K 200 K 250 K Range

5 HO with Cross Loadings NC NC NC 16,198 16,195 16,198 16,195 3
4 HO with Cross Loadings 16,223 16,222 16,215 16,218 16,218 16,219 16,219 8
4 BF with Cross Loadings 16,216 16,213 NC NC NC 16,155 16,155 61
Note. HO = Higher order, BF = Bifactor, NC = Non-convergence.
DIC = Deviance Information Criteria. Parameter estimates were stable across the 4 HO and 5 HO models.
4 BF parameter estimates unstable according to I, 2I, 4I, 8I, 10I, 20I and 25I;

4 and 5 HO have stable estimates across all iterations. Please see Table 6 for BF parameter (i.e., standardized loading) estimates.

Table 5 
Sensitivity Analysis Priors (.001 to .05).

Prior Variance

Model .001 .005 .01 .02 .03 .04 .05

5 HO with Cross Loadings
PPP .009 .293 .440 .547 .567 .535 NC
DIC Reject 16,218 16,211 16,200 16,174 16,119 NC

4 HO with Cross Loadings
PPP .043 .212 .267 .343 .347 .343 .345
DIC Reject 16,226 16,218 16,219 16,213 16,219 16,216

4 BF with Cross Loadings*
PPP NC .46 .46 NC NC NC NC
DIC NC 16,175 16,155 NC NC NC NC

Note. *BF model at .005 and .01 produced non-significant and negative group factor loadings for WM and PS.
For the .01 prior run, SI and VC also negatively and non-significantly loaded on VC for the BF model.
NC = Non-convergence, HO = Higher order, BF = Bifactor, PPP = Posterior predictive p-value, DIC=Deviance Information Criteria.

Table 6 
Four Bifactor Group Factor Loadings.

Iterations 200 K 10 K 20 K

Prior Variance .005 .01 .01 .01

Verbal
Similarities .45 − .44 .44 .44
Vocabulary .45 − .44 .44 .44

Perceptual Reasoning
Block Design .46 .43 .47 .43
Visual Puzzles .41 .39 .43 .38
Matrix Reasoning .19 .21 .22 .19
Figure Weights .24 .25 .27 .24

Working Memory
Digit Span − .26 − .28 .32 − .33
Picture Span − .26 − .28 .32 − .33

Processing Speed
Coding .55 .55 .55 .55
Symbol Search .55 .55 .55 .55

Note. ns = Non-significant (p > .05). Bold = significant parameter estimates, PRI=Perceptual Reasoning Index. Only 10 K, 20 K, 200 K and 250 K 
iterations converged and produced interpretable estimates.
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Spatial group factor (.44, p = .034). This suggests that Fluid Reasoning and Visual Spatial share sources of influence on the indicators 
that are unrelated to the factors (i.e., they contain unique information in common that is not accounted for by their respective factors). 
The specification of correlated residuals did not uncover any additional important relationships beyond the aforementioned correlated 
residual. Whether the cross-loadings only or the cross-loadings plus correlated residual analysis was evaluated, all specifications 
demonstrated no cross-loadings, similar magnitude and direction of primary loadings (see Table A4), and only one significant 
correlated residual estimate. The totality of these results suggested that, besides the correlated residual between FRI and VSI with the 
five-factor higher-order model, the WISC–V attained simple structure where the primary loadings significantly load on a single 
theoretically coherent factor.

Since there has been considerable debate and controversy surrounding whether the four-factor bifactor model discussed in the 
extant research literature is superior to the five-factor higher-order model presented in the WISC–V manual, and considering that BSEM 
is a relatively unknown methodology in school psychology (and psychology more broadly), both models were compared using 
Maximum Likelihood (ML) CFA (e.g., via the Satorra-Bentler correction due to multivariate non-normality of these data) to cross 
validate the BSEM finding that the five-factor higher-order model with the aforementioned correlated residual is the best fit (Table 8). 
Among the three models tested, the ML CFA results suggested that the five-factor higher-order model containing the correlated residual 
between the Fluid Reasoning and Visual Spatial factors produced the best fit with these data. This suggests that the BSEM analyses 
where correlated residuals were specified provided additional insight into the structure of the WISC–V ten subtest primary battery not 
previously uncovered in the extant frequentist literature. Importantly, it also provides some support with this sample for the scoring 
structure presented in the WISC–V manual in contrast with the conclusions from Canivez et al. (2017), Dombrowski et al. (2017) and 
others (e.g., Dombrowski et al., 2019; Watkins et al., 2018).

Table 9 presents the subtest loadings and variance estimates for the five-factor higher-order model, which was deemed the best 
model to represent the WISC–V ten subtest primary battery in the present sample. As shown in Table 9 and depicted in Fig. 1, the results 
display subtest loadings on theoretically consistent factors, no cross-loadings, and therefore the attainment of simple structure. The 
results are also consistent with extant structural validity research in cognitive assessment suggesting that primary interpretive 
emphasis should be placed upon the higher-order general factor as the g factor accounted for a higher percentage of variance (45 %) 
than that of the group factors which ranged from 11 to 14 %. While primary interpretive emphasis of the general factor (i.e., the FSIQ) 
should be regarded, this should not be misconstrued to suggest that the group factors (i.e., index level scores) should not receive any 
interpretive emphasis. Although the general factor variance accounts for much of the variance in the WISC-V there is still sufficient 
variance at the index level should psychologists wish to move to that level of interpretation when clinical situations demand the 
maximization of reliable explanatory variance in a survey-level assessment.

5. Discussion

Bayesian structural equation modeling was used to examine the structure of the WISC–V ten subtest primary battery with data 
obtained from a clinical sample. This analysis permitted a more nuanced and elaborate investigation than what could be obtained 

Table 7 
Model Comparison and Fit (Prior Variance = 0.01).

95 % CrI No. of Parameters

Models PPP DIC Lower 2.5 % Upper 2.5 % pD

4 BF .00 16,243 8.9 61 36.3 37
4 BF with Xloads* 200 K iterations .46 16,155 − 29.6 32.3 − 17.7 67
4 BF with Xloads & Corr Residuals Model Rejected. PSR > 1.10
4 HO .00 16,249 23.0 72.9 32.7 34
4 HO with Xloads 80 K iterations .27 16,218 − 20.8 39.4 36.4 64
4 HO with Xloads & Corr Resid (Subtests) .59 16,225 − 34.0 27.1 57.0 109
4 HO Xloads & Corr Resid (Subtests & Group factors) .59 16,225 − 34.6 27.6 56.7 115
5 HO .00 16,275 37.0 96.4 35.1 35
5 HO with Xloads 80 K iterations .44 16,198 − 28.6 32.9 24.5 74
5 HO with Xloads & Corr. Residuals (Subtests) .43 16,218 − 28.3 33.3 43.7 119
5 HO Xloads & Corr Resid (Subtests & Group factors) .57 16,220 − 34.1 27.6 50.6 130

Note. PPP = Posterior predictive p value, DIC = Deviance information criteria, CrI = Credibility index, pD = Estimated number of parameters, BF =
Bifactor, HO = Higher order, Xloads = Cross loadings, Corr resid = Correlated residuals. PSR = Potential scale reduction.

Table 8 
Frequentist Maximum Likelihood CFA Fit Statistics.

Model S-B x2 df CFI TLI SRMR RMSEA RMSEA 90 % CI BIC AIC

5 Higher-Order 93.1 30 .984 .976 .027 .054 (.042–.067) 16,434 16,274
4 Bifactor 59.2 28 .992 .987 .020 .040 (.025–.054) 16,412 16,243
5 Higher-Order with correlated residual of FR with VS 52.7 29 .994 .991 .019 .034 (.019–.048) 16,398 16,234

Note. S-B = Satorra-Bentler, TLI = Tucker–Lewis Index, CFI = Comparative Fit Index, RMSEA = Root Mean Square Error of Approximation.
AIC = Akaike’s Information Criterion, BIC=Bayesian Information Criteria, FR = Fluid Reasoning, VS=Visual-Spatial.
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using both traditional EFA and CFA (in combination) and produced some interesting findings. First, it demonstrated, perhaps more 
fully than any previous analysis, that the WISC–V is a well-constructed instrument that attained what Thurstone (1954) referred to as 
simple structure (i.e., subtest indicators load one and only one factor without any cross loadings). Relatedly, BSEM offered additional 
insight into the potential underlying complexity in theoretical structure of the WISC–V because of its unique analytical capabilities (e. 
g., simultaneous estimation of all cross-loadings and correlated residual terms). Until recently, this was unavailable to researchers 
investigating the relationship of intelligence theory to available tests of intelligence. Because of this analytical technology it could be 
useful to intelligence researchers who wish to better understand intelligence theory and intelligence test factor structure. With respect 
to the WISC–V, BSEM confirmed that there were no instances of covariation among constructs except for the finding of a correlated 
residual between the Fluid Reasoning and Visual Spatial group factors, which has been posited in previous CFA research on the broader 
16 subtest total battery configuration in the normative sample (e.g., Reynolds & Keith, 2017). Whereas Reynolds and Keith (2017)
arrived at this conclusion using multiple model specifications this finding was accomplished parsimoniously with a single run. 
Regarding the interpretation of this finding, it may well be conceptualized as an intermediate factor between the general factor and the 
group factors or it could be thought of as a latent construct that explains something between two latent variables apart from the general 
factor. Alternatively, it simply could be statistical noise where there is a finding between two latent variables and such finding is 
unanticipated or perhaps meaningless. Put simply, there is no definitive psychological explanation as to what a correlated residual 
represents (particularly at the factor-level) beyond theoretical conjecture by the researcher. Whereas relations between a core test and 
a recall measure makes intuitive sense the prior explanations remain speculative without additional modeling to verify these hypo
thetical structural complexities. Additional research on the topic of correlated residual use in BSEM is necessary.

Second, the results of BSEM indicated that the four-factor bifactor model appeared to be unstable with this clinical sample. The 
model either does not consistently converge or produces parameter estimates (i.e., loadings) that varied depending upon iteration and 
prior variance selection. This is an interesting finding and something that Dombrowski, McGill, and Morgan (2021) also observed in a 
very small number of replications when undertaking a Monte Carlo simulation of the WISC–V normative data and the normative data 
for other cognitive ability instruments. However, this finding is inconsistent with a recent large body of frequentist factor analytic 
research that generally supports the bifactor model as offering the preferred structure for the WISC–V and other cognitive ability 
instruments such as the WJ–IV Cognitive, the DAS–II, and the KABC–II (c.f. Dombrowski, McGill, & Morgan, 2021; McGill et al., 2018). 
For instance, numerous researchers across multiple WISC–V studies have concluded that a four bifactor conceptualization of the 
WISC–V provided the best fit with the data (e.g., Canivez et al., 2017; Pauls & Daseking, 2021). These studies noted that the WISC–V 
structure is reminiscent of the four-factor structure of the WISC–IV that contained Verbal Comprehension, Working Memory, Pro
cessing Speed and Perceptual Reasoning (i.e., fusion of Visual-Spatial and Fluid Reasoning into a complexly determined Perceptual 
Reasoning factor). The rationale for the disparity between BSEM and frequentist factor analytic procedures pertaining to the bifactor 
model needs further study given the implications for the clinical interpretation (Rodriguez et al., 2016a). Although the purpose of this 
study is not to adjudicate this issue in particular, a potential explanation for these findings could relate to the nature of the underlying 
assumptions of the bifactor model. The bifactor model may have limitations for evaluating the structure of cognitive attributes 
(Reynolds & Keith, 2013) when it is statistically under identified and in need of constraining. The inclusion of numerous specifications, 

Table 9 
Five factor Higher Order Model with Cross-loadings and Correlated Residuals (0.01) 100 K Iterations.

General Verbal VS FR WM PS

Subtest b s2 b s2 b s2 b s2 b s2 b s2 h2 u2

Similarities .66 .43 .77 .60 .71 .29
Vocabulary .73 .53 .86 .73 .70 .30
Block Design .76 .57 .84 .71 .60 .40
Visual Puzzles .74 .55 .82 .67 .65 .35
Matrix Reasoning .70 .48 .77 .59 .50 .50
Figure Weights .68 .47 .75 .57 .79 .22
Digit Span .71 .50 .80 .65 .64 .36
Picture Span .58 .33 .66 .43 .74 .26
Coding .50 .25 .66 .43 .47 .53
Symbol Search .66 .44 .88 .77 .71 .29
Total Variance .46 .13 .14 .12 .11 .12 .65 .35
Explained Common Variance .43 .12 .13 .11 .10 .11

Second-Order Loadings (Median) Correlated Residual

Verbal .85 Fluid Reasoning with Visual Spatial = .44

Visual-Spatial (VS) .90
Fluid Reasoning (FR) .91
Working Memory (WM) .88
Processing Speed (PS) .76

Note. b = standardized loading of subtest on factor (median), s2 
= variance, h2 

= communality, u2 
= uniqueness.

Small variance crossing loadings are in the range of .00 to .04, non-significant, and redacted for clarity.
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even small variance priors, could cause the model to be over-identified and fail to properly converge (Dombrowski et al., 2019; Zhang 
et al., 2021). A replication of the results of this study using a larger number of subtests (e.g., the normative sample’s 16 subtest primary 
and secondary battery) would be worthwhile.

Third, when this study used the results of a Bayesian analysis to guide a subsequent maximum likelihood CFA analysis comparing 
the five-factor higher-order model to the four-factor bifactor model, the five-factor higher-order model containing the specification of a 
correlation in the residuals between FRI and VSI produced the best fit with the data. This is an intriguing finding and one that was not 
uncovered previously in the literature for the ten subtest primary battery.3 It suggests that BSEM was able to locate the ‘best’ model fit 
without need for multiple modifications often undertaken in cognitive ability research (e.g., Beaujean, 2016; Reynolds & Keith, 2017) 
that might give the appearance of hypothesizing after the results are known (i.e., HARKing; Kerr, 1998), a practice that should be 
delimited when attempting to replicate or reproduce the structure of an existing measure as it can be antithetical to the scientific 
practice of falsification (Popper, 1962) and prone to confirmation bias (Brown, 2015; Kahneman, 2011).

Fourth, Stromeyer et al. (2015) have criticized the use of cross-loadings and correlated residuals contending that their specification 
simply adds statistical noise, clutters a model with nonsensical information, and detracts from simple structure. Notwithstanding the 
implication that this same criticism can be levied (erroneously) against an entire class of factor analysis (e.g., EFA) with a long standing 
and deep history, the results of this study suggest the opposite to the conclusion posed by Stromeyer et al. given that the specification of 
cross-loadings and correlated residuals clarified, not obscured, the structure of the WISC–V as an instrument that is free of cross- 
loadings and correlated residuals save for one with theoretical meaning. BSEM suggested that either the four- or the five-factor 
higher-order models are parsimonious and fit these data well though the five-factor higher-order model had the lowest DIC.

Fig. 1. Five Factor Higher Order BSEM Validation Model for the WISC–V Primary Subtests with a Clinical Sample. 
Note. g = general intelligence. All standardized loading estimates (median) are statistically significant. Residual terms are omitted for clarity.

3 It should be noted that it was disclosed in the manual (Wechsler, 2014b) that this parameter improved model fit for the 16 subtests total battery 
configuration, but its retention was rejected.
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Fifth, BSEM offers contemporary intelligence researchers a technology unavailable to prior generations (e.g., Carroll, Spearman, 
Horn, Cattell) who used prevailing methodology (e.g., EFA, CFA) accessible to them at the time to model the latent structure of 
cognitive abilities. Accordingly, BSEM may provide researchers in intelligence theory a methodological approach that can examine 
additional interrelationships among abilities not captured by frequentist structural equation modeling methods, addressing a concern 
noted by McGrew et al. (2023) and Kovacs and Conway (2016). As a hybrid of EFA and CFA, BSEM may be useful in attenuating, but 
not fully eliminating, the practice of specification searches endemic to structural equation modeling which may capitalize on chance 
(Meehl, 1993). For instance, BSEM can circumscribe the sequential practice of modifying parameters post hoc, permitting a concurrent 
examination of all specifications (e.g., cross-loadings and correlated error terms). This is one of the powerful features of BSEM that 
could be useful for the modeling of human cognitive abilities, which are known to have many overlapping and interrelated components 
that often require elaborate post hoc modeling to uncover. The results from a BSEM analysis may even be useful in informing scoring 
structures for various instruments which assume simple structure and may not take into consideration instances where the underlying 
structure of a test may be more theoretically complex.

Sixth, the practical implications of this study suggest that the WISC–V ten-subtest primary battery readily attains simple structure 
and might be adequately scored as intended by the test publisher (i.e., interpret the FSIQ and five index level scores). This contrasts 
with the majority of independent structural validity literature, which suggested that a four-factor bifactor model akin that that of the 
WISC-IV (Wechsler, 2003) is preferred whereby the Fluid Reasoning and Visual Spatial subtests coalesce to form a combined FRI/VSI 
(formerly the Perceptual Reasoning) factor. Although the present BSEM results tacitly support the underlying scoring structure of the 
ten WISC–V primary subtests from a theoretical perspective, it is important to evaluate sources of variance (e.g., explained total and 
common variance; see Table 9) when determining the adequacy of measurement for the interpretation of scores (Reise et al., 2023; 
Rodriguez et al., 2016a; Rodriguez et al., 2016b; Sellbom & Tellegen, 2019). The variance ascribed to the general factor (represented 
by the FSIQ) and the five groups factors suggests that much of the interpretive emphasis should be placed upon the FSIQ score but that 
the five index scores have sufficiently meaningful variance for subsequent interpretation beyond the FSIQ.

Finally, Muthén and Asparouhov (2012) discussed the utility of BSEM for scale development, where researchers can use it in a 
stepwise fashion to modify and improve upon the instrument. There is an additional potentially important use. Given its ability to 
freely estimate more parameters than conventional frequentist methods, BSEM may help to resolve the replication crisis surrounding 
the theoretical structure of cognitive ability measures generally and the WISC-V specifically. Since the WISC–V was first published, a 
variety of research has emerged suggesting a different factor structure for the WISC–V (e.g., a four-factor bifactor model; Dombrowski 
et al., 2019) than that posited by the test publisher. Considering the popularity of the instrument and its centrality in high-stakes 
clinical decisions (e.g., identification of intellectual disability and specific learning disability), this is a problem. When multiple 
studies fail to replicate or reproduce results, then this undermines confidence in an instrument’s structure and how that instrument 
should be scored and interpreted.

6. Limitations

As with any method, BSEM is not without limitations. While it is important to understand the structure of tests with clinical 
samples—most youth who receive such measures are part of these samples—it may not be possible to fully generalize these results to a 
normative population or in focal clinical situations that do not cohere with the sample in question. In particular, the current study’s 
sample is predominantly comprised of youth with a primary diagnosis of Attention-Deficit/Hyperactivity Disorder which could result 
in altered structures due to the underlying cognitive deficits associated with the disorder (Becker et al., 2024).

Most saliently, BSEM requires a higher level of statistical coding sophistication and access to raw data. It also is a technique that 
requires further study, critique, and cross validation with modeling approaches of the frequentist variety given its limited use to this 
point. One of the advantages of BSEM—the specification of priors—also poses a potential limitation. When attempting to replicate or 
reproduce the structure of an existing instrument, or when attempting to create a new assessment instrument, the selection of a prior 
should be established empirically to avoid specification searches where researchers chose a prior solely because the researcher prefers 
one model (e.g., higher-order vs bifactor) over another. This haphazard approach to model fitting should be eschewed (Dombrowski 
et al., 2022; Meehl, 1993). As a result, use of BSEM can attenuate, but does not fully resolve, the practice of post hoc specification that 
has been staunchly criticized in structural validity research since the inception of modern computational techniques (Horn, 1989).

Further, additional research needs to be conducted regarding use of correlated residuals in BSEM. There have only been two prior 
studies using BSEM on commercial ability measures (e.g., Dombrowski et al., 2018; Golay et al., 2013) and a select few investigating 
psychology, health, and management (De Bondt & Van Petegem, 2015; Fong & Ho, 2013, 2014; Stromeyer et al., 2015; Zyphur & 
Oswald, 2015). Some researchers raised concerns about the use of correlated residuals claiming that their use does nothing more than 
add statistical noise (Stromeyer et al., 2015). However, Muthén and Asparouhov (2012) and Asparouhov and Muthén (2015) contend 
that if correlated residuals are used appropriately then their specification will enhance the understanding of an instrument’s under
lying structure. The present study demonstrated that their use does not appear to add statistical noise and obscure model fit; instead, it 
appeared to provide a degree of structural and theoretical clarity regarding the WISC–V increasing confidence that the instrument may 
measure what the test publisher claims it to measure as well as cohere with models produced by independent researchers (e.g., 
Reynolds & Keith, 2017). In fact, the specification of correlated residuals led to the uncovering of a relationship between VSI and FRI, 
which, when subsequently modeled in the five factor higher-order models using maximum likelihood CFA, produced a marginally 
better fit than any other tested model. Whether this reflects capitalization on chance or whether BSEM represents an improvement over 
the combined use of EFA and CFA requires further evaluation. It does appear, however, to be an intriguing alternative to modeling 
methods of the frequentist variety and should benefit from increased attention particularly when used to study the structure of 
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contemporary intelligence tests.

7. Conclusion

As indicated in this study the use of BSEM offered greater insight into the factor structure and theory of one of the world’s most 
commonly used assessment instruments, the WISC–V, by showing that the instrument attains simple structure and may reflect the 
theoretical five group factors suggested by the test publisher. While some may think this is an obvious conclusion, it is not. The factor 
structure of the WISC–V has been vigorously debated in the assessment literature with most of that literature not only questioning the 
structure posited by the test publisher, but also offering alternative theoretical/factor structures, many of which have yet to be sub
stantively replicated (Dombrowski, in press). This lack of convergence in the empirical literature is concerning. The resulting factor 
structure of an instrument assists with determining how that instrument should be scored and interpreted (Brunner et al., 2012; 
Dombrowski, McGill, Canivez, et al., 2021). When multiple studies fail to converge upon the same structure, then this undermines 
confidence in the instrument’s posited scoring approach and suggests a replication problem (Dombrowski & McGill, 2024). Use of 
BSEM holds promise for helping to streamline the recovery of plausible structural models for an assessment instrument by obviating 
the need for post hoc tweaking in conventional frequentist methods when there is additional complexity in an underlying model. These 
results illustrate that traditional approaches for recovering posited model complexity may simply produce rival models for an in
strument that obscures its true underlying structure and that are unlikely to replicate in subsequent research. Though BSEM requires 
additional statistical understanding and coding sophistication, the extra effort may prove worthwhile particularly when a variety of 
potential rival theoretical and interpretive models emerge for an instrument in the assessment literature.
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Table A1 
Descriptive Statistics for WISC-V Subtest and Index Scores  

Score N Mean SD Skewness Kurtosis 
Block Design 710 8.6 3.5 +0.23 -0.02 
Similarities 710 9.2 3.4 -0.01 -0.17 
Matrix Reasoning 710 9.1 3.4 -0.07 -0.30 
Digit Span 710 8.0 3.1 +0.22 +0.26 
Coding 710 7.3 3.3 +0.06 -0.36 
Vocabulary 710 8.9 3.6 +0.06 -0.58 
Figure Weights 710 9.6 3.2 +0.05 -0.29 
Visual Puzzles 710 9.7 3.4 +0.02 -0.34 
Picture Span 710 8.6 3.3 +0.10 -0.30 
Symbol Search 710 8.1 3.3 +0.00 -0.01 
VCI 702 94.8 18.0 -0.03 -0.25 
VSI 703 95.3 17.9 0.17 -0.03 
FRI 702 96.2 17.3 -0.03 -0.44 
WMI 703 90.1 16.2 0.14 -0.16 
PSI 703 87.0 17.1 -0.10 -0.02 
FSIQ 670 90.8 17.7 +0.04 -0.27 

Note: VCI=Verbal Comprehension Index; VSI=Visual Spatial Index; FRI=Fluid Reasoning Index; 
WMI=Working Memory Index; PSI=Processing Speed Index; FSIQ=Full Scale Intelligence Quotient. 
  



Table A2  
           
Covariance and Correlations Matrices 
                

           
 Covariance Matrix         
 BD SI MR DS CD VO FW VP PS SS 

 ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ 
BD 11.922          
SI 6.28 11.724         
MR 7.2 5.929 11.634        
DS 5.231 6.023 5.536 9.596       
CD 4.663 3.974 4.421 4.425 10.784      
VO 7.035 9.336 6.442 6.408 4.702 12.857     
FW 7.177 6.137 6.785 5.001 3.782 6.673 10.17    
VP 8.647 6.573 7.254 5.427 4.625 7.188 7.062 11.381   
PS 5.007 4.916 5.115 5.783 4.12 6.025 4.683 5.279 10.689  
SS 5.323 4.468 4.734 4.502 6.704 5.094 3.903 5.272 4.214 10.841 

           
           
           
 Correlation Matrix         
 BD SI MR DS CD VO FW VP PS SS 

 ________ ________ ________ ________ ________ ________ ________ ________ ________ ________ 
BD 1          
SI 0.531 1         
MR 0.611 0.508 1        
DS 0.489 0.568 0.524 1       
CD 0.411 0.353 0.395 0.435 1      
VO 0.568 0.76 0.527 0.577 0.399 1     
FW 0.652 0.562 0.624 0.506 0.361 0.584 1    
VP 0.742 0.569 0.63 0.519 0.417 0.594 0.656 1   
PS 0.444 0.439 0.459 0.571 0.384 0.514 0.449 0.479 1  
SS 0.468 0.396 0.422 0.441 0.62 0.431 0.372 0.475 0.391 1 

 

  



 

Table A3 
 
Mplus Input Code 
 
        Title:     BSEM WISC-5 Clinical Sample 10 Subtest 
                   !Model 5 Higher Order OR 5 Bifactor Model (VCI, VZI FRI, WMI, PSI) 
        data: 
        file is "WISCV.txt"; 
        VARIABLE: 
        NAMES ARE bd si mr ds cd vo fw vp ps ss; 
        USEVARIABLES ARE bd si mr ds cd vo fw vp ps ss ; 
        define: 
       standardize bd si mr ds cd vo fw vp ps ss  ; 
        analysis: 
        estimator = bayes; 
       !estimator = mlm; 
        proc = 2; 
        fbiter = 100000; 
        chain = 2 
        stvalues = ml; 
        Kolmogorov = 100; 
 
        MODEL: 
 ! 5  Higher Order    
        vci by si vo ; 
        vzi by bd vp; 
        fri by mr fw; 
        wmi by ds ps ; 
        psi by cd ss; 
        g by vci vzi fri wmi psi ; 
 
! For bifactor model, cross loads and correlated residuals code remains the same but replace with the followig code: 
! 5 Bifactor 
 
      !vci by si* vo (1); 
      !vci@1; 
       
      !vzi by bd* vp (2); 
      !vzi@1; 
 
      !fri by mr* fw (3); 
      !fri@1; 
 
      !wmi by ds* ps (4); 
      !wmi@1; 
 
      !psi by cd* ss (5); 
      !psi@1; 
 
      !g by si* vo bd vp mr fw ds ps cd ss ; 
      !g@1; 
       
      !vci with vzi-g@0; 
      !vzi with fri-g@0; 
      !fri with wmi-g@0; 
      !wmi with psi-g@0; 
      !psi with g@0; 
 
 
!cross-loadings: 
!   Saying *0 gives a zero mean start value for the parameter.   
!   The prior with mean zero and small variance (e.g., .01) is then applied during the computations. 
 
       vci by bd*0 vp*0 mr*0 fw*0 ds*0 ps*0 cd*0 ss*0(xload1-xload8); 
 
       vzi by si*0 vo*0 mr*0 fw*0 ds*0 ps*0 cd*0 ss*0 (xload9-xload16); 
 
       fri by si*0 vo*0 bd*0 vp*0 ds*0 ps*0 cd*0 ss*0 (xload17-xload24); 
 
       wmi by si*0 vo*0 bd*0 vp*0 mr*0 fw*0 cd*0 ss*0 (xload25-xload32); 
 
       psi by si*0 vo*0 bd*0 vp*0 mr*0 fw*0 ds*0 ps*0 (xload33-xload40); 
 
 
!correlated error terms 
 
       bd-ss(p1-p10);  
 
!bd-ss are the residual variances of the subtests.  
!The IW prior is assigned for the residual variance using b1-b10 as described below. 



 
!These are the subtest covariances lower-triangular elements taken row-wise 
 
       bd-ss with bd-ss (c1-c45);  
       vci-psi(a1-a5); 
       vci-psi with vci-psi(b1-b10); 
 
!b1=error covariance; a1=error variance; IW defined below and assigned as noted above 
!b1 a1 
!b2 b1 a2 
!b3 b1 b2 a3 
!b4 b1 b2 b3 a4   
 
       model priors: 
 
!Create the residual variance-covariance matrix (by default, residuals are independent, thus not correlated). 
!This will allow to estimate them because otherwise they wouldn't be part of the model.  
!There will be 45 covariances and 10 residual variances in total. Forumla: n(n-1)/2 for # of covar.  
!Name the variances from b1-b10 and the covariances from c1-c45 
 
 
!This is the approach described in Muthen & Asparouhov (2012).  
 
!16 = 10 PARAM + 6 !Assign an inverse-wishart prior to the residual variances 
!(following Muthen and Asparouhov instructionsn see page 14-15) 
!df=# of parameters +6; where IW (I, df)  
            
!p1-p10~IW(1,16);  
 
!################################################################################################################### 
!Steps to conduct corr residuals based on Asparouhov et al (2015). See Asparouhov et al (2015) for technical description in appendix 
  
!Steps to conduct correlated residuals.  
!1) Run xloads only analysis. 
!2) Obtain residual var from each indicator. 
!3) The forumla is IW(residual var*df, df) or (.282*100, 100).!Df is obtained from Asparouhov et al. (2015) where 
!df is chosen based upon sample size such that N=10,000 then df=1,000. N=500 the df =100.  
!It takes an additional step and specification as noted above and reference to their response to Stromeyer et al (2015) to obatin df. 
!In this example since N=710, this is about ~500 so d =100 for this formula. 
 
              p1~IW(28.2, 100);  
              p2~IW(27.3, 100); 
              p3~IW(43.5, 100); 
              p4~IW(31.2, 100); 
              p5~IW(46.9, 100); 
              p6~IW(20.7, 100); 
              p7~IW(37.9, 100); 
              p8~IW(26.2, 100); 
              p9~IW(51.8, 100); 
              p10~IW(26.9, 100); 
 
!Assigns IW prior to latent group residual variances. 
              a1-a5~IW(1,11);  
 
!Assign another kind of inverse-wishart prior to the subtest covariances (Asparouhove &Muthen, 2015) 
              c1-c45~IW(0,100); 
 
!Assigns an IW to latent group factor covariances based on Muthen & Asparouhov (2012)  
              b1-b10~IW(0, 11); 
 
!Assigns prior variance to the xloads 
 
              xload1-xload40~N(0, .01); !Assigns prior variance of .01 to the xloads 
 
 
              output: 
              tech1 tech8 stdy svalues; 
 
              plot: 
              type = plot2; 
 
 
 

 

 

 

 

 



 

 
Table A4 
      
Five Factor Higher Order Model Loading Estimates 
  
  

  Xloads 
Only 

Xloads & 
Corr Resid 
(Subtests) 

Xloads & Corr 
Resid (Subtests & 

Group Factors)   No priors 

     
Verbal     
SI .85 .81 .65 .77 
VO .89 .78 .89 .86 

     
Visual Spatial     
BD .46 .94 .89 .85 
VP .41 .89 .94 .82 

     
Fluid Reasoning     
MR .78 .77 .80 .75 
FW .80 .84 .74 .75 

     
Working Memory     
DS .80 .74 .74 .79 
PS .71 .53 .53 .66 

     
Processing Speed     
CD .75 .72 .82 .66 
SS .82 .80 .71 .88 

     
General     
VCI .84 .78 .77 .85 
VSI .92 .95 .96 .91 
FRI .97 .98 .99 .90 
WMI .86 .75 .78 .88 
PSI .69 .66 .66 .76 

Note. Xloads=Cross-loadings. Corr resid=Correlated residual. Correlated residual 
between FRI and VSI (.432) significant at p<.05 

 



Addendum 

Higher-Order vs. Bifactor Models: Distinctions with a Slight Difference 

When modelling the factor structure of IQ tests, researchers generally consider two different structural models. 
The first is the higher-order (second-order) model where the general (second-order) factor is fully mediated by first-
order group factors in influencing subtests indicators (measured variables) below the group factors. This model is 
depicted in Figure 1 below using the WISC-V ten subtest primary battery. 

Figure 1. Higher Order Model for the WISC-V  

 

  



The second is the bifactor model where the general factor and group factors simultaneously have direct influences on 
individual subtest indicators (measured variables).  This is depicted in Figure 2 below using the WISC-V ten subtest 
battery.  

Figure 2. Bifactor Model for the WISC-V  

 

While both models acknowledge the existence of the general factor (g) on intelligence tests, the higher-order 
model conceptualizes the general factor as superordinate to the group factors and subtests with first-order group factors 
between the general factor and the individual subtests (measured variables). In other words, the general factor has no 
direct influence on the individual subtests as its influence is fully mediated by the first-order group factors. Conversely, 
the bifactor model conceptualizes the general factor as a breadth factor and assumes that g and the group factors have 
simultaneous direct effects on the subtests. For a more technical discussion of this topic please see Beaujean (2015), 
Canivez (2016), and Gignac (2008). From a practical, interpretive perspective, the bifactor model provides partitioned 
variance to determine the relative influence of the general factor versus group factors which has implications for their 
use in interpretive methods which stress primary interpretation of group factor indices (e.g., PSW). This may be 
accomplished with a higher order model (as per Keith & Reynolds, 2018) but the merits of variance partitioning using 



the HO model1 have not been thoroughly investigated so this practice should be considered experimental until further 
verification ensues.  

From a theoretical perspective the higher order model’s conceptualization of g is akin to looking at the shadow 
of a person standing next to a street light versus looking directly at the person (bifactor) to ascertain how tall they are. 
The higher-order model was explicated by Thurstone (1947) and is considered a bottom-up (American model) where 
group factors are prioritized (see Beaujean & Benson, 2019 for a discussion). Spearman (1904) was among the first to 
discuss g where he posited a two-factor theory for the construct. With Spearman’s model (i.e., the British approach) 
interpretation of the general factor is prioritized and group/specific factors are regarded as largely a statistical nuisance. 
However, in some of his later writings, Spearman regarded group/specific factors with greater importance. In fact, one 
of Spearman’s post-doctoral fellows, Karl Holzinger, elaborated on two-factor theory culminating in the development 
of what later became known as the bifactor model (Holzinger & Swineford, 1937).  

In 1957, Schmid and Leiman created their orthogonalization procedure. The SL procedure represents an elegant 
transformation of the higher-order model and is considered an approximate bifactor model (Reise, 2012). The bifactor 
conceptualization of intelligence essentially lay dormant until 1993 when John Carroll created his magnum opus, 
Human Cognitive Abilities, where he re-analyzed approximately 457 datasets going back to the 1920s.  This creation 
ostensibly served as a bulwark against those who disavowed the importance and even existence of g. The creation of the 
SL transformation also raised awareness of the bifactor model as a tenable model for contemporary intelligence tests, 
but could only be produced secondarily from standard EFA results.   

In 2011, Jennrich and Bentler created a true exploratory version of the bifactor model via analytic rotation (for 
further application and simulation of its use on real world data see Dombrowski et al., 2021).  Prior to that time 
researchers who wanted an exploratory bifactor modeling approach had to utilize the Schmid-Leiman (1957) procedure. 
At present, both the higher-order model and the bifactor model may be used to investigate the structure of tests of 
cognitive ability though application of the former to other psychological measures is controversial as the theoretical 
justification for a general factor of say personality is less well-developed (Bonifay et al., 2017). Despite debate (see 
Decker et al. [2021] and a response via Dombrowski et al. [2021]) about which model reflects the true reality of the 
structure of tests of cognitive abilities and the nature of intelligence, there have been few studies that have empirically 
tested this issue (see Dombrowski, McGill, & Morgan [2021] for a Monte Carlo simulation of the structure of all major 
intelligence tests) so the issue remains yet unresolved.   
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Figure A1 
Posterior Predictive Checking Scatterplot 
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Figure A2 
Posterior Predictive Checking Distribution Plot 
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